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I. INTRODUCTION

This study has been undertaken for the.purpose of ébtaining an
imporved feedback control for a lunar landing vehicle simulator. The
simulator, used to train astronauts for lunar landing, consists of a
cable supported, rocket propelled vehicle. The lunar gravity is
simulated by maintaining tension on the cable equal to 5/6 of the
vehicle weight. A drum, that the cable in wound onto, is controlled
to keep the proper tension_on'the cable, and to allow the cable length
to be changed.

The drum is mounted on a mechanism similar to an x-y plotter. A
br}dge moves along one axis and a cart moves along the bridge for the

other axis.

Tv = tracking cart

F = control force

Th = Horizonal. Thrust )

Tv =z Vertical Thrust
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The existing hardware simulator at the NASA Langley Reserach Center
[1]. uses the angle at the top of the cable with respect to vertical
as an indication of vehicle position relative to the tracking cart.
Unfortunately, if the piloting becomes too active, lateral and longitudi-
nal vibrations occur in the cable which impose disturbing forces on
the vehicle. If the control action is to be improved so as to attenuate
these cable vibrations, it is clearly necessary to introduce additional
state information to the feedback control law.

Although a complete study of this system would entail consideration
of a three dimensional problem with interacting dynamics and time var-
iable parameters, the scope of this work will be restricted to a study
of vehicular motion along a horizontal coordinate axis. Since for small
perturbations the responses of the system along the three axes are
decoupled, this study can to a first approximation be readily gcneralizad
to include the three dimensional case. However, the rigorous analysis
of the effect of time varying parameters is heyond the scope of this
thesis. |

Because we are considering a distributed parameter system, it is
not possible to obtain complete state information about the cable from
on-line measurcments, since in theory there are an infinite number of
states. A further restriction, imposed by practical considerations, is
that information about the cable can be measured onliy at its ends, and
nowhere else along its length. This lack of freedom of sensor location
is due to the changing cable length, the difficulties in attachiug
suitable sensors, and cable twisting which would confuse directional

orientation.
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An approach to solving this problem is to design an chserver which
is capable of estimating a more complete state vector based on knowledge
of the control input and states that are measurable [2][3]. However,
the effects of parameter uncertainties and noise have not been studied
in sufficient depth to justify confidence in control system design based
on the use of the observer principle when estimating states of higher
order systems. This is the subject of further research.

Another approach, used here, is to develop an optimal or subh-
optimal control law from measurements which are available. Thus, a
linear control law, consisfing of available measured infermation multi-
plied by a gain vector, can be optimized in terms of an appropriate
cost function by using Powell's Method [#], which is basically a modified
relaxation technique. For a description of Powell's Method, see Arpendix
A.

It should be recognized that the solution, as found by the mini-
mization procedure, will be sub-optimal for several reasons.

(a) All of the state information is not available.

(b) The integration time interval of a cost function producing

a constant-gain solution is infinite. This interval can be
used for analytical solutions, but when a cost function is
used in simulation studies some practical restriction must
be placed on the upper limit. This is usually fixed by
observing asymptotic behavior of feedback terms as the time
interval is increased. Here the practical limitation en-
countered was the large amounts of computer time concerned.

Therefore, twenty seconds was used for the integration interval.
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The system is large enough so that
the cost as a function of gains. This leaves the possibilities
open for local minima.

(d) Only one representative thrust program was used in the

minimization procedure. Other thrust programs could result
in a different solution.

The effects of (b), (c), and (d) could be studied with a hybrid
computer, With its high speed repetitive mode, it would be possille
to try different initial gain vectors, longer running times, and different
thrust programs. Unfortunately, the digital program to be described
was found to require solution times in the order of five hours, ruling
out the possibilities for extensive simulation studies. It is expected,
however, that the thrust program used is representative enough to produce
satisfactory results.

The model of the system used for this study was developed by C. H.
Knapp [5]. It is a sepmented representation of the real cable in which
the accuracy of simulation depends upon the number of sections used in
the model. 8ix sections, as used to model the cable in this study, will
support up to five harmonic modes. Experience shows that this is more

than adequate for the accuracy demanded in the simulation.




II PRACTICAL STATE MEASUREMENT AND CONTROL

The distributed parameter system presents a particularly difficult
problem to the control engineer. Not only are concepts of controllability
and observability difficult to apply, but the stability theory of partial
differential equations has not yet been developed to the same extent as
for ordinary differential equations.

Athans [6] offers a set of procedures, and a philosophy leading
to a reasonable approach to distributed parameter systems. A similar set
of rules has been followed in this problem.

(a) Analysis of the system should remain in distributed parameters

form as long as possible.

(b) The number of transducers must be limited to some practical
number; in this case there is a firm restriction to the cable
ends only.

(c) The number of control inputs to the system must be limited
to some practical number. In this problem the control inputs
must be limited to the ends of the cable.

Goodson and Klein [7] have presented a weakened definition of

observability for use with systems having modal solutions. A system

is defined as N-mode observable if mode amplitudes for the first N modes
can be uniquely established from measured information. Higher modes
constitute an error in the function. In the cable problem, with reference
to Figure 3-1, and subject to the assumption that the cable ends are

fixed, if the motion is defined by the first N modes,
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3 . . nrat .. nwat
y {x,t} = Z sin —— (A cos + B sin 3, (2.1}
& 3 i i n ) 4
n=l
then the remaining terms may be defined as an error function,
5 t t
. DX nua nna
e(x,t) = } sin =5(a cos + B _sin ). (2.2)

n=Nt1 2 n % n 2

The value of N will depend on factors such as the locations and
number of the transducers, and the number of derivatives that can be
obtained in practice.

The concept of N-mode observability can be considered a conservative
one. The measured information may actually contain information defining
higher modes, with some practical consideration, such as noise problems,
limiting how many modes can be observed. To show tﬁat higher mode
information is available from the angles measured at the cable's ends,
the following is offered.

The deflection at an arbitrary point x on the cable is

(-]
y(x,t) =} sin E%f{A cos E%EE-+ B_ sin nn:t ). (2.3)
nol n n

Taking the first spacial derivative

o .
s dy(x,t) _ ¢ nm nmx nnat . nmat .

8{x,t) iw ngl T ©os —E-(Ancos T+ Bn31n Z ) (2.4)

where £ is the overall cable length.

The first time derivative becomes

€0
o .. D&, nm nwx . nnat . hmat .
o (x,t) ~n§1 («EfJ( 7) cos —— ( Ah51n Tt Bncoo 7 Y. (2.5)

Each successive derivative, evaluated at both ends of the cahle, provides
two more equations with the same unknowns, An and Bn' By taking n
successive derivatives, and evaluating at both ends of the cable, the

first through nth terms of An and Bn can be found. By making n arbitrarily
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large, an arbitrarily lavge number of modes can be uniquely defined.

It is instersting to note that the term cos 2%5‘ will always
equal *1 for all n, when evaluated at x=0 and x=f. In this case, the
restriction that measurements be made only at the ends of the cable
is not a serious drawback in theory. However, the fact that higher mode
information is available in theory does not mean that it is available
in practice, since higher order derivatives are quickly obscured by the
noise. Although modal amplitudes were nét included explicitly in the
cost function it can be argued that the higher mode information contained

in the measured angles will insure that these modes will not become

unstable for a set of gains obtained from a minimization procedure.




IIT THE SIMUEATION MODEL

The simulation model used for computer simulation in this problem
is a segmented model developed in [§], modified to permit the use of a
force input. Thus, with reference to the mass at the top of the cable,

as shown in Figure 3-1

— 0 P——n — (V)
® . ‘ i
% |
12 N\t
Figure 8-1

>3

F e
— 4= sin ¢
Moy gy 1

where Tc is the tension in the cable, and ¢ is the angle of the cable,

measured with respect to the vertical, at the point of contact with the

cart. With the small angle approximation

23

® e . F B
YV B o= ¢ b By o ® (3.1)
MTV 1 HTV

The remaining state equations, as developed in [6] are, using

small angle approximations:
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where
HTV = mass of tracking vehicle
TC = cable tension
Tw = whiffletree tension
r, = equalibrium of cable segment
v, = whiffletree length
Hc = mass of cable segment
Hw = mass of whiffletree
Bv = mass of simulation vehicle
Th = horizontal thrust component

F = Force applied to tracking vehicle

(3.2)

To explain the coordinate system of the segmented model, Figures

(3-2) and (3-3) are offered as illustrated in [5].
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i cable saction

Figure 3-2

{Thrust)

nth section whiffletree and vehicle

Figure 3-3




IV TRANSFORMATION OF SEGMENTED HMODEL STATES TC
INFORMATION HMEASURAELE ON THE REAL CABLE
Since the information that is measurable from the real cable is
not directly available from the segmented model, a transformation must
be developed to extract this information. The initial assumptions are:
{a) The time constants of the vehicle, and of the tracking cart,
are long enough compared tc those of the cable, to consider |
the cable as constrained at both ends.
(b) Angles will be small enough to justify use of small angle
épproximations.
(c) Deflections in the cable are small enough so that the tension
in the cable may be considered to be constant.
(d) Bending moments in the cable are negligible.
We now look at the classical vibrating string problem. The

partial differential equation describing the string is

2 2
3;_.%=a2 2.:%. a2=§§. (4.1)
at ox
where

y = deflection of a point on the cable perpendicular to cable
length direction

x = coodinate axis along cable length

T = cable tension

g = gravitational acceleration

w'= ecable weight per unit length.

11
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Assume & solution of the form
y{x,t} = (C cos %ﬁx + D sin évx) (A cos At + B sin At). (4.2}
With the cable constrained at both ends, and defining & as the cable

length we have

y{a,t) = 0.

1]

y(0,t)
Thus at x=0

x(0,t)

o .
0 =g (Acos At + B sin At) (4.3)

and at x=%

sin 5—2=0 or L nm.
a a

Therafore

A, = E%i’m 1,253,504,
and

o«
- . DX nrat .. nwat |
y(x,t) =] sin -——i—--(An cos —— + B_ sin = ) (4.4)

n=1
Deflection along the cable will vary periodically between extreme

values proporticnal to

} sin UL ' (4.5)
4
n=l

The amplitude term is

nwat

(An cos —g== + Bn sin (4.6)

nrat
z)‘

The restriction imposed by the nature of the cable is that
information is measurable only at the ends of thebcable‘ Another
restriction is that it is not practical to consider higher derivatives
than the first, because of noise problems. These restrictions impose
a limitation on mode observability. Considering the firsit twe vibration

modes, we have
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yGest) = ACt) sin 22+ B(t) sin-23%

where A{t} and B(t) are the peak mode amplitudes of the first and

second modes respectively.

Moy Mgy y
1 % %
x
A
My My
Figure 4-1

Taking the first derivative with respect to the spacial coordinate x

& (x,t) = At) T cos J2+ B(t) 2 cos X | (4.8)
Using the small angle approximation,

& (x,t) 2 0 Gx,t) | | (%.9)
Evaluating 6(x,t) at x=0 and x=%

el(é,t) = A(t) n/% + B(t) 2n/% (4.10)

8,(2,t) = - ACt) n/% + B(t) 2n/1L (4.11)

We now have two equations and two unknowns, showing the relation-
ship between the measured angles at the ends of the cable, and estimated

amplitudes of the first twe modes.
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Taking the first time derivative

o ©

6, =

-

ks o

] It 3y
{t) w/2 + B(%} g?f/“ié (4.12)

L}

é2 =-A(t) /8 + B(L) 21/%. (4.13)

Within the stated assumptions and restrictions, and given the
angles and first derivatives, the amplitudes of the first two modes are
uniquely defined. These amplitudes are an estimate with higher mode
amplitudes constituting the error in the estimate.. By definition [7]
the cable is two-mode observable.

In addition to the vibration:modes, there is also a pendulum mode,

at a much lower frequency as illustrated by Figure 4-2.

All angles shown
in positive sense

Figure -2

Thus the pendulum and vibration mede information can be easily separated

if desired. From Figure 4-2 we see that




6, = 6} - ¥ (4. 1)

)
it

0! - o
9 Y
with derivatives

5. = 80 -
i1 (4.15)

e
8,70, - ¥

i e

-,

The angles Gi, Ji, aé, éé, Y and @ are assumed to be measurable.
While Knapp's segmented model [§] is well suited to computer
simulavion, it has yet to pe shown that the angles defining the orient-
ation vi the cegments can be used to define mction of the real cable

in terms of mode amplitudes.

Using the swmall angle approximation for the two-segment model

it is seen that angle ¢ defined in Figure 4.3 can be expressed as

dyydp 0

i° ot (¢l + ¢2)r
2r

<~

\b.—.

2

(4.18)

(a9
i

¢.r (r=cable sepment
1
length)

Cx
t

5 = (¢l + ég)r

Figure 4.3
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By carrying this on to n-l1 sections:

(n~1)¢l + (n-2) A Y
v = (n-1) '

@

(4.17)
Here (n-1) is used as the last cable section, the nth section
being reserved for the whiffletree.
Other angles, corresponding to measured angles on the real cable,

can be found through simple geometric relations.

eg’ = -y (4.18)
6% = ¢, - ¥ (4.19)
1 %1
n-1
a=F ¢ (4.20)
k=1

Figure 4-4
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s .8 . s . -
1 %2 are defined relative to the segmented model.

As shown below, with reference to Figure 4-5, a transformation can be

Note that 6

found relating these anglas to Bl, 62 as measured at the ends of the

actual cable.

P 5
.2 62
6
1Y \\\\L~§__‘a«”)F
92 ”4
v

Figure -5
The deflection of an arbitrary point on the cable is a sum of

the deflections caused by the two modes,

y (x) = a sin %5- + b sin Z%i =y, Ty, (4.21)

with a and b representing the instantaneous amplitudes.
Looking at the contribution from the first mode (see Figure 4-6)

where 2/(n~1) is the length of the first segment and

0.. )
] angle, mode
we have

YL _an
L

@

] ——

11 dx %=0

and at the hinge of the first segment

= a 8in UL
¥i 7 )

= a sin T
Eo nml @




i8

~ Figure U-6
from whicp it follows that
7 . W
oo . a Sin(ﬁff _ a(n-1) sin (E:E-) -
11 L/0-1 ) * )

The correction factor for the first mode is:

8
K, = ;l - an/t e T . (4.23)
eli a{n-1) sin (E:I (n-1) sin (E:I

L

Following the same development for the second mode

8
K, = 12 2% ' (4.24)

) . 2% °
0y, (n-1) sin (E:I)

‘The angles at the ends of the cable are also a sum of the

contributions from two modes,

- 8 _ 8 8
8y =03y 839 4 03 %0 +8,5
o (4.25)
6. =6 4+ 68 6, =

9 % 9y 18y 5 0y = 0y + 0,
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From the first and second mode corvection Factors

3 -

. . ﬁ@ll o - L 621
jp 5 ! X | 21 . o
_ (n-1) sin (=) (n-1) sin (=)
(u.26)
8 8
. . 270, , o - 2m 6,
12 © ? 22

. 2% . 2%
(n-1) sin (B:E- (n-1) sin (E:I)

and from (4.10) and (4.11) relating to the real cable, it follows that

z(el~ez) ) z(el+92)
8 B e b =
Ly

2%
Because harmonic modes are symetric the following relations exist

(4.27)

between the mode angles at the cable ends:

=011 = 09y 812 % 85y »
(4.28)
-0% = g° o5 = ¢
11 P2 12 - Y22
Therefore, eliminating the second angle,
- B _ 8 8
8y % 03y ¥ 0355 0) =05, + 8.,
(4.29)
= o S:—.S 8 :
8% =833 * 85 5 0= -0, + 6, .
Substituting (4.29) into (4.27) we find that
Lo MOy * 0yt 8y - 8),) 208y, (4.30)
2% 2% 3 ¢
- z(ell t 0, - 0y, 4 612)' i 22912

by by
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Now (4.30) (u.31), (4.23), (.28) yield

L 8° g 6%

a= b b = °12 . (4.31)
(n-1) sin 4 2 (n-1) sin 2n_
n-1 n-1
From (4.29) it follows that
0y - o, = 207, , 6] + 05 = 285, . (4.32)
Substituting for eil and 6:2, the mode amplitudes become
| z(ei - ag) 2 (ag + eg)
a = ; o b= - o . (’4'33)
2(n-1) sin ——e 2{n-1) sin —

n-l n-1
In (4.33) we have the model amplitudes of real cable expressed in

terms of angles derived from the segmented model.

It is also convenient to write from (&.27)

8, = %- (2b + a)
(4.34)
= 3 -
8, =7 (2> al

‘Two more measurable states are available from the whiffletree.
Since the whiffletree is taken to be an inflexible, inextensible metal
rod, a suitable sensor attached at the hinge can be used to characterize
its angular deflection and rate. As described by equations (4.35) and

(4.36), this information is obtainable from the segmented model.,

ew = Qa é ¢n (4.35)
Gw = a 4 ¢ﬁ . (“036)
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Here a is defined by equation {%.20), ¢, is the angle of the whiffle-
tree with respect to the (nwl)th cable segment, as illustrated in Figure
3-3, and ew is the angle of the whiffletree from vertical.

The velocity of the simulation vehicle can be related to the
variables used to define the segmented model. In Figure 4-7, the velocity
V is expressed in terms of variables as defined in equations (4.17),
(4.20), (3.1), as

V=YV

v (4.37)

Figure 4.7

On the real system this velocity should be measurable.




V PERFORMANCE EVALUATION OF THE CLOSED LOOP SYSTEM

With the information that is now available from the segmented model,

the closed loop system of Figure 5-1 is proposed.

Model
1 Desired velocity
sM
v
Velocity error
Actual
Tn velocit
Plant
Horizontal e x, State Vector
Thrust : Force
Hydraulic e
Actuator :
u y = K,
Control Sig“%} Measurements 1.
T
Ky ) N Kl
hz =
Figure 5-1
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Here the plant is described by equations (3.1) through (3.5), and
(4.37. C is the linear transformation developed in section IV, with
y consisting of variables measurable from the real system. The vector
X represents all of the state information of the plant.
A low order approximation, shown by equation (5.1), describes
the hydraulic actuator used to drive the tracking cart,
F "§
G'= 3 5 » (5.1)

§ + 1.2 w3 S+ Y3

with wy = 2.5 rad/sec.

The states of this actuator will not be used for feedback information
in this study.

In summary, the following terms are included in the feedback control

law:

e . .

Voes ¥s v, 8,5 8,5 8,, 8,, 6 , 6 , velocity error, and Th.
A minimization procedure based on Powell's Method [4] is used to
obtain an optimal set of feedback gains. This leads to the question
of a suitable cost function. The ultimate goal of this problem is to
produce the best possible simulation of a free vehicle using the information
that is available.
A useful measure of system performance is a functional comparing
.some dynamic property of the plant with that of a model whose
response is considered to be ideal. In this case, the measure of error
between the plant and the model could be a combination of position,
velocity, or acceleration. The relative weights to be given to the costs

on any of these quantities would depend upon the exact specifications

that should be met. For example, if position or acceleration errors
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given the ,reac2st weighting in the cost functionai. In this study,

only velocity error has been considered. The level of the control

signal at the cart must also be included so as to insure that unrcasonalls
demends are not rlaced on the control forece. A suitable cost function

is therefore presented in equation (5.2).

&

r (_h_l:».
L

2
oG 1
exp max

+ B (er*ror)2 -1 J dt (5.2)
0

When an analytical approach to optimal control is used, there are
advantages to ucing quadradic terms in the cost function. In this case
however, because of the complex system and the distributed parameter
problem, no analysis is anticipated. This permits some latitude in
choosing different forms for terms in the cost function. The exponentizl
term was chosen because it imposes a relatively large penalty on control
forces larger than Fmax' This puts a firm constraint on the magniiuds
of the control signal. The exponential form also puts a relatively
small penalty on forces smaller in magnitude than Fmax'

Note that vibration mode airplitudes of the cable are not included
in the cost function, and are therefore not directly penalized. Any
attempt to include mode amplitude terms in the cost function should result
in a degradation of system performance at the minimum cost point. Howaver,
if, in the running of the system, mode ampliiudes were to exceed some

specified limit, mode terms for the first two modes, as shown in equatlions

(4,103 through (4.13), could be included.
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For a complete listing, flow diagrams, and discussion of the
computer programs used to simulate the system and find an optimal

set of gains, see Appendix B.




VI RESULTS AND CONCLUSICNS

The system was optimized under the following conditions:
(a) Cable length set to 200 feet.
(b) The thrust program used was a two second, +500 lbs,
burst at t=0 secs , and a =500 lbs, burst at t=10
secs of two secoﬁd duration.
(¢) Cost fungﬁion calculated over a 20 second interval.
The optimal feedback gains are shown in Table 5-1 along with the
associated measured states, and indications of the changes in cost and
RMS error resulting from adjusting the individual gain terms. The
overall reduction in cost was from 1543.35 to 24.18, with a drop in
RMS error from 8.787 to .797.

The initial value of K, was set to 1.0 to keep the first-run

3
cost and RMS error down to a reasonable level. Freliminary results
showed that thrust, or the linearly related acceleration of the,
vehicle, is an impor‘tant term in the feedback law.

Table 5-1 clearly shows that only ¢, @, éw, and Th are really
necessary for near optimal control. Slight improvements can be made
with ew, él’ Vtc and Error, while the rest have negligible effect.

Operation with a 200 foot cable length is satisfactory, with
maximum values of ¢ at .006 radians, and cable vibration amplitudes
not greater than three inches peak. At shorter cable lengths, the

pendulum and vibration frequencies become high with respect to the

hydraulic actuator frequency, and the system becomes unstable. With

26
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Gain Intial Optimal Measured Decrease Decrease in
Terms Gains Gains State in Cost RMS Errcor
Kl 0. 88386.38 ¥ 917.65 3,209
K, 0. 61295.43 v 479.61 2,998
K3 1.0 6.52 Th 35.77 396

- % L] j 9
K, 0. 28609.35 ¢, 2.11 00
Kg 0. 1410662,75 éw 71.09 1.211
K6 0. 736.00 Error 4,60 049
K7 0. 32622.52 ’ 91 .15 001
Kg 0. 87164.19 é1 3.1Y4 .019
Kg 0. 9773.,14 92 1.22 017
K10 0. 162.87 62 . 003 Q.
Kll 0. -104.68 vTc 6.13 070

Table 5-1

constant gain terms, the cost and RMS error remain nearly constant down to

about 75 feet, where ths cost begins to increase rapidly.

By making gain

terms associated with cable states length dependent, the stable control

extended down to 50 feet.

However, this change was made on an intuitive hasis;

better results could be obtained by finding optimal gains at several cable

. lengths, and making the control law length dependent using curve fitting

techniques.




APPENDIX A MODIVIED POWELL'S METHOD

Powell's method is an efficient technique for minimizing a function
of several variables. It is especially useful when it is not possible
or practical to use gradient methods. An especially desirable feature
of Powell's Method is its ability to develop search directions aldng
long narrow troughs. This insures rapid convergence to a minimum with
quadradic or nearly quadradic functions.

An interation is as folléws:

(i) For v = 1,2,...,n calculate A, 80 that f(Prvl + Xrgr) is a

minimum and define Pr = Pr-l + Ar£r.

Step (i) is a search in n diréctions for minimum points. A good
initial direction matrix [£] is a row of ones along the diagonal. This
insures an initial round of n orthagonal search directions.

(ii) Find the integer m, 1sm¢n, so that {f(Pm_ ) - f(Pm)) is a

1
maximum, and define A = ngm_l) - f(Pm).
This step identifies the direction which produces the largest change
in the functional value.
(iii) calculate £y = f(anvPo) and define f, = f(Po) and f, = f(Pn),
This and the next step are to prevent nearly dependent search directionc
from being introduced. Powell states that when minimizing a function

of more than five variables, these steps may be necessary to achieve

convergence.
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{iv) If either fg > fl and for
. 2 1 ~ 2
3 2f2 % fs) ° (fl - f2 - A)° > E’A(fl - fa) s
use the old directions El’ 52, cosy gn for the next direction,

(£

and use Pn fer the next ?0, otherwise
(v) Defining ¢ = (Pn - Po), calculate A so that f(Pn + AE) is a

minimum, use 51, 52, ceesy Em-l’ g gs tets En’ E as

m+l’® Cmt
the directions, and Pn + Af as the starting point for the
next iteration.

This step introduces a new conjugate search direction.




APPENDIX B COMPUTER PROGRAMS

The computer programs, used to apply the optimization procedure,

were based on techniques developed by R. J. Kochenburger. [8].
Although the system, with its twenty states, is relatively complex,
the program runs in nearly real time when compiled with the Fortran
H compiler, run on an IBM 360/65 computer, and using a At of .005

seconds.

A desireable feature of subroutine SYSTEM, which simulates the
system, is that changes can be easily made without extensive modifica-
tions to the system equations. Changes in the control law, the hydraulic
actuator, or other portions can be made by just changing a few lines
of program. Also, the thrust program is written as a subroutine, allow-

ing easy changes without changing the system equations.
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SUBROUTINE LINKAGE

Named Common Block Table

LINK  M/PROG POWELL MINIMA SYSTEM INT THRUST
A FSTPAS FSTPAS
A ERMS ERMS
B FINISH FINISH
B FAIL FAIL
B EXRNDS EXRNDS
B EXCESS EXCESS
D J J J
D ROUNDS ROUNDS ROUNDS
D GAINS GAINS GAINS
D K(20) - K(20) K(20)
E TRIALS TRIALS TRIALS TRIALS
E COST COST COST COST
F SUBFIN SUBFIN
F SUBEXC SUBEXC
F MAXTLS MAXTLS
F A A
F DA DA
F TOLMIN TOLMIN
G NEWDT NEWDT
G NEWTIM NEWTIM
e LSTPAS LSTPAS
G ITERAT ITERAT
G STATES STATES
G DT DT
G x(20) %(20)
G ¥(20) Y(20)
H T T T
1 CAL CAL
I TH TH

Table B-1

.31




DEFINITIONS OF BRANCHING VARIABLES

CAL - Causes subroutine thrust to read data and set initial conditions
of thrust during system initialization

DYNOUT - With DYNOUT is set to true, system dynamics can be printed
out with the time increment of PRNDEL

EXFRTR -~ Used to store information that an excessive number of trials
was required in the j direction

EXMIN - Signals that a search is being made in an orthogonal direction
as the last step in an iteration of Powell's Method

EXRNDS - Set to true when the maximum number of iterations, or rounds,
has been exceeded

FAIL - Indicates a failure of the optimizing procedure, when set to
true either for excessive rounds or excessive trials.

FINISH -~ When set to true, the procedure is terminated, either success-
fully or not.

FSTPAS - Routes subroutine SYSTEM through the initialization branch on
the first pass through SYSTEM

LSTPAS - Causes subroutine INT to go through the first branch of Fourth
Order Runga-Kutta integration at the beginning of each At.

MAXTLS - The maximum allowable number of trials, or attempts to find a
minimum along any one direction vector.

MXRNDS - The maximum allowable number of rounds (see ROUNDS)
NEWDT ~ Initially set to true. This causes an adjustment in the time
increments to suit the integration subroutine on the first pass

through subroutine INT

NEWTIM - Signals for a new value of thrust from subroutine thrust when-
ever time is incremented

NXTPAS - Routes subroutine INT through the correct branch
.ROUNDS - Counts the number of iterations of the optimization procedure.

One round is a mipnimization in all directions plus possibly in
an orthogonal direction.
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RUNPOW - When RUNPOW is set to false, the procedure stops after one
pass through subroutine SYSTEM. This is useful when system
dynamics for only one set of conditions is desired.

SEARCH - Starts the search for the minimum point on a quadratic curve
in subroutine MINIMA after the minimum has been passed by the
regular steps of Aa

SUBEXC -~ Excessive number of trials in subroutine MINIMA will cause
this to be set to true.

SUBFIN - Signals that a minimum has been found in subroutine MINIMA

TF- Total running time of system dynamics

TOLMIN - A change in the cost function for two successive trials of
less than the specified value of Tolmin shows that a minimum
has been found. SUBFIN is then set to true.

TOLPOW - When the change in cost in each direction is less than the
specified value of TOLPOW for an entire round, FINISH is set
to true and the optimum parameters have been found.

TPT - Sets the time for the next print-out of system dynamics

TRIALS - Counts the number of trials in one direction; reset to one
for each new direction
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HAIN PROGRAM

CIMMON /LINKA/FSTPAS,ERMS

COMMON !L!&&B!?i%!&ﬁeFA&L&EXRN&S@E%ﬂ%SJ
COIMMON /LINKD/J,ROUNDS;GAINS,K(20)
COMMON /LINKE/COST,TRIALS

LIGICAL FSTPAS,FINISH,FAIL;EXRNDS
INTEGER EXCESSsTRIALS yROUNDS s GAINS

REAL K

MAIN PROGRAM ENITIAL IZATION
FSTPAS=.TRUE.

ROUNDS =0,

J=1

TRIALS=}

ERMS=0.

R RERSRFIRBEARR AR IR A SRR EE R KBS ARG RG ARk B Rh S hdk ke ek &
OJUTSIDE PARAMETER OPTIMIZATION LOOP

CALL SYSTEM
CALL POWELL
[F{ .NOT.FINISHIGO YO 10

b gek bRt e pb bR be kol dolk R ddok g ok ook el ko ok e ok ok kol ok ok ok

IFLFAIL)IGO TO 11

WRITE( 620!}
WR(TE(6'21)TRIALSaJoROUNDSvERHSoCOST
ARITEL 69223 (K(T)y I=1,GAINS)

sfap

IF(.NOT.EXRNDSIGOD YO 12
WRITE(6923)
stToep

d&!TE(&pZ4)EXCESS
SToP

FIRMAT (/776X *OPTIMUM GAINS FOUND®/)

el FORMAT(1X¢315,2F12.2)

22
&3
2%

FIRMAT(LX,13F10.2)

FORMAT (/76X +*FAILED BECAUSE OF EXCESSIVE ROUNDS®)
FORMAT (/76X *TOU MANY TRIALS AT DIRECTION VECTOR®,I[5)
END




RERD SYSTEM
0A/7TA
4

A

CALCULATE
Sy5. CONSTANTS
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CAL & ¢vue
‘:

(cnu THRUST )

|

3

/
SET NtTIAL
CONDITIONS

%
LSTFPAS s trvune
AMEWTIM = ¢true
NEWDT =7True
ITERAT =3
& = 0.

[
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Heads

2
(caee THrusT )

Figure B~2 Sulroutine System




38

l

TRANSFORMATION
TO DISTRIBUTED
PARAM E TV ER
MEASUREMENTS

¥

CONTROL SIGNAL

¥
SYSTEM EQUATIONS

v

COST FUNCTION

¥

ERROR S1G AL

Y

ERR © fERdon

!

HYDRAULIC ACTU. ]

( cree nr >

]

/L\ (
tvue LSTPAS false .

\/

gl

yes "
4
DYNOUT >-LrLe 7
WRITE Syetem TPrsTPT+PRNUDEL
DYynemics Info, ]
—-
yes
t <ty
né
erns o[ £25
f

y

WRITE Des/red
Parminal wnd/ tlons

RETURYN

Srop
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SUBROUTINE SYSTEM

COMMUON /LINKA/FSTPAS, ERMS

COMMON ZLINKD/JoROUNDS sGATNS K{ 201}

CIMMON /LINKE/COST,TRIALS

COMMIN /LIAKG/NEWDT NEWTIM,LSTPAS, ITERAT,STATES 40T,
X{20),Y120)

CIMMON /ZLINKH/T

COGMMON /LINKI/CAL,TH

REAL LENGTH,K

LIOGICAL CALGFSTPAS,LSTPAS yNEWTIMeNEWDT,DYNOUT RUNPOW

INVEGER STATES,; ITERAT ,GAINS TRIALS, ROUNDS

IF(.NOTLFSTPASIGO TO 1

i e oo o oot ol ok oo ool ot e o o ok o oo ko oo o o ok e o o ek oo X s ke o ok o kol ok

INITIALIZATION BRANCH

STATES=20

GAINS=11

SET NON-VARYING SYSTEN PARAMETERS
TVM=23¢0.

Rd=10,

V=310,

dM=62.

READ STATEMENT NO. 1

1E=1

READ(S +30,ERR=50)DT, TF,PRNDEL { FMAX{BETA
WRITE(€,32)07

WRITE(6:40)
WRITE(OH,41)TFPRNDEL,FMAX,BETA

READ STATEMENT NO. 2

Ie=2

READ INITIAL GAIN VECTOR
DI 2 1=1,GAINS
READ{S5 431 ERR=50JK(1)

ARITE INITIAL GAIN VECTOR
ARITE( 6442}

ARITE( 634} {KLI) oI=1yGAINSI

READ STATEMENT NO. 3

IE=3

RcAD MODE CCNTROL LOGICAL VARIABLES

PRINT CUYT SYSTEM DYNWNAMICS WITH DYNOUT = .TRUE.

STOP AFTER FIRST PASS THROUGH SYSTEM IF RUNPOW = .FALSE.
READ(5 ¢35, ERR=50)LYHOUT ¢ RUNPUW

ALl TE FODE CONTROL LOGICAL VARIALLES

ARI TE( b 944}

ALETE {6445 DYNOUT ; RUNPOH

READ STATEMENT KO. 4
iE=4

READ CABLE LENGTH
READLS 30, ERR=SOILENGTH
a1 TE CAUBLE LENGTH
ARITE (6, 3TILENGTH




IO,

[aEe Rl

[N N Y ¢y

e Oy

g

SET SYSTEM PARAMETERS THAT COULD VAHRY

THIS SECTION SHOULD BE MOVED INSIDE THE
[NTEGRATICN LOOP FOR TIME VARYING CABLE
LENGTH

RE=LENGTH/G6.
Cid=.02435%LENGTH/S,
TC=10333,

Td=8333,
Cl=TCr2360.

C3=TC/ (CH*RE}
C2=CLl/RE+C3
C4=C3+.,01612*TC/RE
C5=.01612*TW/RE
C6=.0010612*TC
Cl=.001945%Tw
C8=1.7/TVM
CI=C8/RE

[NITIALIZE THRUSY PROGRAM
CAL=. TRUE.

CALL THRUST

CAL=.FALSE.
FSTPAS=.FALSE.,

TPT==,5%DT

TF=TF+TPT

B Gl ol ok o o ke MO e ook ool e o o e ek ok o ol ok e ofe sl o ol o oo o ol ok o e RS ROR & Y

SET PLANT STATES TQ INITIAL CONDITICGNS
1 DO 3 N=1STATES
3 YI(NI=0.

LSTPAS=.TRUE,

NEWTIM=,TRUE,

NEdDT=.TRUE .

ITERAT=1

T=0,

IF{ NOT.DYNOUTIGO TO 24

ARITE COLUMN HEADS
WRATTE(6,438])

ITERATIVE PORTION STARTS HERE = INTEGRAYION LOOP
¢% BF{ .NOT.NEWTIMIGO TO 20
CALL THRUST

TRANSFORMATICON TO STATES MEASURABLE FROM
JISTRIBUTED PARAMETER SYSTEM (REAL CABLED

23 PSI=Y13)+.833%Y{8)+.06T%Y{TIe.5%Y(Dhe.333%Y(11}
i Yo 167%Y(13) ,
PSID=Y{4)+.833%Y{0}¢.606T%Y{(81¢.5%Y(10}¢,333%xY(]2)
1 +.16T%Y (14} ‘
ALPHA=Y{3 ) ¢YIS5)¢Y{TIeY(9heY {114V (13}
ALPHAD=Y {4} +Y(61+Y(8)+Y {10} ¢Y{L2V+Y {14}
AGLIS=Y{(3}-PST




ce ua woliva ald”id4l

12 01 (O9{SvdiST°LON® }dI

(N-{0ZIAI%°Ee-(6T1A%G2°9-={02 )%
N=-{0Z1A=161}X
HOLVNLIY J21MNVAIOAH

0S3=(811x
031VY93INT 03uVNDS HOYY3

*T-DSIxVII+{Zan i XVYWS/IIYOL ) JdXI={LTIX
NOTLONOA L1SCD

H1%22€000°+(S T A%L0-{E€ETIA%9I=(9T )X
(9T)A=(ST)X

(ST ARG+ ICT ) Ay d-{TTIA2€2={%1)X
{%TIA={ET)X
(eEDIAHITIA{TTIA={B)AY%EI=(Z T )X
(Z1IA=(10)X
{LIDIA#L6IA-16 ALY %ED={0T1 )X
fOTYA={6]X
((EIA+TLIA-(LIA=LSIAIRED={R)X
t8)A={ L)X
(LL)A+(GIA={SIA-{EIA}RED=(D)X
(9YA={S)X

U0 EI~ (S I A2+ LEIAAZD=={ %)X
() A=(€)X

3U0IxBIHLE)ARTI={ 2]} X
Hi2922€00°={1)X

SNOILIVADI W3LSAS

N2 {6 T)A=3DNH04
dOIVNLIIVY JIINVYCGAH A8 3T1IIHIA
ONIXIVYL OL 0317d4dV 3JUCH 3JLviINIv)

(TTIHR(ZIA+ ()£ d0UUI+ (EINkHIH (G N2 €
{QIS-{9TIA+AVHA IV I+ (H) A ISH-{GT)A+VHATIVI+ 2
({OT)MxQZONVH{B)IUxZONY+H(B ) AXQTONY+ 1

(LI TONVA{ZIN:OT S+ (1)U 1S #HLIONT =N
TYNOIS T0YiIN0OD JLIVINDIVID

YOHY IxYOUAI=0S3
{({9T)A+QVHA IV IR *0T-QISdxHIONIT-(IA-(TIA=40UY ]
TVNOIS d0¥Y¥Y3 31vINIIVI)

{STIA+VHAIV=VIM

T10d= {08+0840V-}=025P ¥
T0dx(08+04+0Y ) =0T SNy
T0dz{g+6+V=)=2ANY

FOdx {9484V ) =T CNY
HIO9NAT/91%1°€="Nd
{OSZONVAASTONY I 4G T960° xHLION3 T =09
{SIONTASTONY I%GTI960° xHIONT 1=8
{ASZONY-CSTONY I RL92T * = HLIORNII =Y
{S2ONY~-STONY 229917 xH19NT 1=V
GI1Sd-GyHdIY=(Senty
Sd=vidIe =Sl 00y
GISd={%1A=051"0¥

&l Gad

bl b

WD

(SR RS



L ¥

SYSTEM DYNAMICS PRINT-DUT FROM HERE

IFL MOT.DYNOUTIGO TO 25

ARITE G35 THeFORCE,ERRORYIL T sAsBPSIHTALT
¢3 IF{T.LT.TFICO YO 22

ERMS=SCRT(Y{LBI/TFI}

I C To W
Wwida g ¥ }.?;

WRITE(Gs33ITRIALSyJoRCUNDSERMSCOSY
WRITEL 6341 {K(1},1=19GAINS])

IF{ NOTLRUNPOR}SYOP

RETURN

é2 TPT=TPTY+PRNDEL
2l CALL INT
GJ TO 24
£0 WRAITE(6,51)IE
510P '

20 FIRMAT(6F10.3)
21 FIRMAT(F20.4)
32 FIRMAT(6X " INTEGRATION INTERVAL = ®4F6.%y" SECS®//)
23 FORMAT(IHO,1Xe31i632F12.3)
34 FIRMAT(L1X313F10.2)
Z5 FIRMAT(1X,49F12.3)
26 FURMAT(2L10)
27 FIRMAT(®OCABLE LENGTH = *4F6e2s® FT.%)
38 FIRMAT(SX,*THRUST's8X"FORCE®* s 7X,y *ERROR ",
1 3Xe"COST yLIXe A s 1LlXy"B% 8Xe®PSI? 410X,
2 "WTA® 48X *TIME?)
40 FIRMAT(4X,°TF® 46X " PRADEL® 46X * FMAX 06X, *BETA®)
41 FIRMAT(4F10.3)
42 FURMAT(*OINITIAL GAIN VECTOR®)
4% FIORMAT{'OLOGICAL MODE CONTROL TERMS®)
4% FURMATY (2L 10)
€1 FJURMAT(® READ DATA ERROR AT READ STATEMENT NO. ®413)
END
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* &
MATI = Gains e}
A CNVREG =0

¥

i Do fovr (wl, Gaing
]

Po, mK;

|
g

Reed Hivraceéion
Vecters ¥y,
[ ]
o Do fow je&y, MMM

¥

! EXFRTR; = false
Aj =0

]
K 4

\ READ 4A; /

[ 1

j=1
ROUNDS =3
Clase = Ceost?
¥ = Cost
E/INISH = False
FANL = Felse
EXNUN = Falsa
EXRND S = Falise

| o= Aj
A6 = 4
Tetats =1

SUBFIN » felse
SUBEXC = False
Csede = Cose

v
pd Do For (=1,6aing

¥

T‘emk,‘ =&y

%

Figure B-3 Subroutine Powell
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trae
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Q CALL INIFA
false w
sua:xc/ false _l
tveue Pe For (mf, Caias
g
My 2lambk, +XZy;
RETURN
\
FXFRT Ry false
g
teue
EXFRTR § = tvue
EXCESS = §

FAI = ¢tvue
FBINISH = ¥vrue

!

RETURHN

v

EXFARATRy = Lalse

]
ne /'{hmur

Ncnvr, =0

ZTot powr

Ncnvr3 = Ncnvr3 +d

4

Clase = Cos?
OEC; = Cs¢fe —~Cos¥
PR

e Cogé
@8 = DEL,
P =g

EFINISH B true

1

RETURN

|

ERrTIN = Paise
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)

2 Do For N=3@ Gaiag

2. LpEC, S A

yes

rM =N

4 = DEC,

&

[~ Do for (% 3,Gains

o

¥
Save; = &/
o= S Xy = Pay
t

\
Savel = Cost

¥
(catt sysrem )
Y

¥3 = Cose
Cose = Save 2
¥
Do fov ¢2 3, Gatng

)

& = Save ;

"e

4):',

yas

Diga =

big, = (fi=2Fs ef3 ) (6 ~ o -2 )*

oS 4 (‘f,-f,;)"

bl Yes

v
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THS = O,

g

Do Fovr ImJF, Galng

y

TR; = &; - Po;
TRS= FksS » T#f

Y

TSR »a/TRY -
)
Do Ffor I3, Gains
]
TR,
v
Do For N =P, Gailns
¥

Ziw &7, u08

2

Do fov MN=M , Gainsg

]

EXFRYRySEXFRT Ry,

A 4

EXFRT Ry, = Failse
EXMIN & true
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]

WERITE OIRECTION
VECTORS

y

Rounds e Reuwndg+§

Do fer (=32 ,Caing

Y

Poy == i}

4

¥ = Cosé
Je=d

4

EXRNDOS = tvrue
EFAIL = tvue
FINIS H = v ue

!

RETURN
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SUBROUTINE POWELL

CIMMON /LINKB/FINISHeFAIL EXRNDS,EXCESS

COMMON /LINKD/J:ROUNDS:GAINS,K{20}

COMMON FLINKE/COST,TRIALS

COMMON FLINKF/SUBFIN,SUBEXC yMAKTLSsAsDATOLMIN
DIMENSION SAVE(20),P0(203,LAMDA(20) ;DLAMDAL20)
ODIMENSION EXFRTR(20),2(20,20)+TK{20),DEC(20),TEMKI{20])
LIGICAL FINISHsFAIL,EXRNDS,SUBFIN,SUBEXC,EXMIN
LUSICAL STARTLEXFRTR

INTEGER GAINS,EXCESS TRIALS,ROUNDS

REAL K,LAMDA

[IF(ROUNDS.GY.0)G0O TO 10

e e ool ot o o ode o e e e o o oot o o oo oo o R ool e e ol ot e oo e ek ot o o e v ook e ok ok Ak

INITIALIZATION BRANCH
MAM=GAINS+1

READ STATEMENT NO. 6

LE=6
READ(5¢43,ERR=50) TOLMIN, TOLPOW ¢ MXRNDS ¢ MAXTLS
HALTEL6,60)

HRITE{6:61) TOLMIN,TOLPOW ¢ MXRNDS s MAXTLS

READ STATEMENT NO. 7

[E=T -

READ INITIAL DIRECTION VECTORS

83 S5 I=14GAINS
READ(5,44ERR=50}{Z2(1sJ) ¢ J=1+GAINS)
WRITE INITIAL DIRECTION VECTORS
WRITE(6,:62)

D3 6 1=14GAINS
WRITE(6e450{2(0sJ)oJ=1yGAINS)

READ STATEMENT NO. 8

IE=8

READ INITIAL DLAMDAS
READ(5946ERR=50) (DLAMDA{J} yJ=1 ¢MMM)
WRITE INITIAL DLAMDAS

WRITE(6463)

WRATTE(6:40) (DLAMDALJ} o J=1 o MMM

DO 1 I=1,GAINS
POLII=K{I1}

DI 2 J=1.FMM
EXFRTR{J) = FALSE.,
LAMDA(J)=0.
J=1

ROUNDS=1
KCNVRG=0
CLAST=COSY
F1=C0ST
FINISH=.FALSE,
FAalL=.FALSE.
EXMIN=.FALSE.
EXRNDS=.FALSE.
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16
17
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RE-INITIALIZE FROM HERE FOR EACH DIRECTION
A=LAMDA(J)

DA=DLAMDALY)

TRIALS=1

SUBFIN=.FALSE.

SUBEXC=,FALSE.

00 4 [=1,GAINS

TEMKLT)=K(1)

CSTFT=COST

Lotk ek khkd bk fkbhdbbb bk Rk e hr fakk bk h bk ok bk Bk

CALL MINIMA

IF{SUBFINIGO TO 12

IF(SUBEXCIGO TO 13

00 14 [=1,GAINS

KOL)=TEMK L) +A%Z(I,J)

RETURN FOR NEXT TRIAL WITH NEW GAIN VECTOR
RETURN

IF{ .NOT.EXFRTRIJIIGO TO 15

EXCESS=J

FAI L=, TRUE.

FINISH=.TRUE.

EXCESS TRIALS IN ONE DIRECTION IN THWO SUCESSIVE ROUNDS
FAILED TO FIND OPTIMUM |

RETURN

EXFRTR{J}=.TRUE.

50 10 16

EXFRTR{JI=FALSE.
IF(ABS(COST-CLAST)GT.TOLPOKIGO TO 16
NCNVRG=NCNVRG+1

IF(NCNYRG.LT.GAINS) GO TO 17
FINISH=.TRUE.

FOUND OPTIMUM GAINS - SEARCH COMPLETED
RETURN

NCNVRG=0
CLAST=COST

DEC (J)=CSTFT-COST

J=J¢l .

IF({J.LE.GAINSIGO TO 3

IF{ NOT.EXMINIGO TO 21

EXMIN= . FALSE.

Gd TO 29

F2=COST |
FIND DIRECTICN IN WHICH LARGEST CHANGE IN COST CCCURED
DEL=DEC(1)

M=1

DO 22 N=2,GAINS

IF{DEC(N) <LE.DELIGU TO 22

DEL=DECIN}

H=N

CONTINUE

DO 23 I=1,GAINS

SAVE(L)=K( 1}

KOTI=K(I}+K{E)-POLED
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40
41
42
43
44
45
456
€1

b9

HRITE{6:42)

SAVEZ2=COST

CALL SYSTEM

F3=00857

20 24 I=1,GAINS

K{I1=SAVE(I}

COST=SAVEZ2

CHECK TD SEE IF NEW ORTHOGONAL DIRECTION
VECTOR IS NEARLY DEPENDENRT
EF(F3.LE.FLIGO TO 3¢
DIGI={Fl=2.%F24F3)}¥{(Fl-F2=-DEL } %%2
DIG2=« S*¥DELF(FL=-F3)%%2
IFI(DIGL.LE.DIG2)GO TO 30
ARITE{G:41)

D3 32 I=1,GAINS

WAl TE CURRENT DIRECYION VECTORS
ARITE{6:45)(ZLTsN)N=LyGAINS)
ARITE(6441)

RIUNDS=ROUNDS+]
FF{RODUNDS.GT.MXRNDS)IGC 70 20

D) 31 I=1,GAINS

PII)=KLT)

F1l=C0SY

Jd=1

START NEXT ROUUND

GO TO 3

EXRNDS=6TRUE,

FAIL=.TRUE.

FINISH=. TRUE.

EXCESSIVE NUMBER OF ROUNDS - FAILED YO FIND OPTIMUM
RETURN

TKS=0,

00 28 I=1,:GAINS
FRELI=HEL)=-PO(T)
TRE=TKS+TRK{T)I=TK(I)
TKSR=SQRT(TKS)

00 33 I=1,6GAINS

LT MHM)=TKLTI}/TKSR
B3 33 N=M,;GAINS
Z{IN)=Z{1sN¢1})

BJ 34 N=M,GAINS
EXFRTRIN)=EXFRTR{N+1}
EXFRTR{MMMI=. FALSE,
EXMIN=TRUE

SEARCH FOR MINIMUM ALCNG NEW DIRECTION VECTOR
GO T0 3

ARITE( 6451} 1E

stap

FORMATIIX,13F10.2)

FIRMAT {1HO)

FIRMAT {*OCHECK COST AT K=Z2KN-KO*'}
FIRMATI(2F10.2,2110}

FIRMAT(11FT.2)

FIRMAT{LIX;13F10.5)

FIRMAT(L3F6.2])

FIRMAT (Y RFAD DATA FQRNR AT READ STATFMEMNT N & ¥ 75
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€ FIRMATI(®0? 08Xy TOLMINT (46X, "TOLPUW® 5 7X o "MXRNDS?
1 s & Xy MAXTLS®)

€L FIRMATI{TX,2F10.3,2110}

£2 FIRMAT(POINITIAL DIRECTION VECTORS®)

€3 FORMATI{COINITIAL DELTA LAMDAS®)
END
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/

Friats =&
SUBFIN = Ffalse
SUBEXC = False
SEARCH = False
Clasgt = Cos?

K pay = X

o s A

/

Twials &3
dn-z = aﬂ-‘l
Ky = &%

AC = Cost—Clase

dCu.g =4C
AC= Cost ~Clast
Clagt = Cos ¢t

1

RETURN

|

Clasgét =
& e g

Cose a6 & -8 &

Clasé = Cosd

o= Xe2AoK

’ 3
RETURMN

RETURN

- frue <& CH

yes

¥ oo

SUBFIN

*truae

!

RETURN

yes

SEARCH

= deua

Eig\me Beli  Subroutine MINIMA

/~A\/ci o.
{

false

>

no
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Tvials
Maxetls >
4 €
SAVE s & ooy = OCrmg
SUBEXC = ¢vue . ot D
Ax=240t
l K= K+ AN
Twials = Telals+3
RETURN
V
RETURN
Y

\
SUBEXC = tvue

l

RETURN

|

o= BEna(xieoxn, ) =

= 4ac (a':a s Q”.:’)
2[4 C”‘i(«—«n_,)—

AC(Kuoy = Kn.g) ]

}

“n‘g = .y
dp., = SAVE
Tvials s Fwials ¢ 1

l

REVIL sa by
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SUBROUTINE MINIMA

COMMON FLINKE/COST,TRIALS

CIMMON JUINKF/SUBFIN, SUBEXC,MAXTLS, AgDA,TOLMIN
LUGICAL SUBFIN,SUBEXC SEARCH

INTEGER TRIALS

EF{TRIALS.GT.2IGO 7T

c 3
IF(TRIALS,.GT.1)G60 1O 2

SUBFIN=.FALSE,
SUBEXC=.FALSE.
SEARCH=.FALSE.
CLAST=COST
ANl=A

TRIALS=2
A=A+DA

RETURN

2 TRIALS=3
AM2=AM1
AMl =A
[F{COST.LE.CLASTIGO VO 4

COST INCREASING - DECREASE A
DA=-DA

DC=COST-CLAST

CLAST=COSTY

AsA+DA+DA

RETURN

CIST OECREASING - CONTINUE INCREASING A
4 OC=COST-CLASTY

CLAST=COST

A=A+DA

RETURN

3 00C=0C
DC=COST-CLASY
IF{SEARCHIGO YO 9
IF{DC.GE.0.)GO TO 8
CLAST=COST
AMZ2=AN1
Adl=A
DJUBLE STEP SIZE AND TRY AGAIN
DA=DA#DA
A=A+DA
TRIALS=TRIALS¢]
IF(TRIALS.GT.MAXTLSIGO TO 12
RETURN

8 SEARCH=.TRUE.
GJ 10 10
9 IFLABSIDCI.GT.TOLMINIGD TO 11
HAVE FOUND A MINIMUM IN THIS DIRECTION
SUBFIN=oTRUE.
RETURN

11 IF{TRIALS.LE.MAXTLSIGC TO 10




i2
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EXCEEDED MAX ALLOWABLE TRIALS IN THIS DIRECTION
SJBEXC=.TRUE.
RETURN

SAVE=A
FIND MINIMUM POINT ON QUADRATIC CURVE
AS=A%A
AMLS=sAMLI®AML
AM2S=AM2%AM2
ANUM=DOC* (AS—~AM1S)=-DC¥{AMIS~-AM2S)
DEN=DDC*{ A-AM1)}-DC*(AM1-AM2)
=, 5S®ANUM/DEN
AM2=AM1
AM1=SAVE
CLAST=COST
TRIALS=TRIALS¢]1
RETURN

END
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Read
ottt 0y

RETURN
yes
/
% =~5,
RETURN
yes
7
T = Py
3 ;
%0
RETURN
v
RETURN
1
Py ==
e =
o) T
P b o o e i i e v e
»«41’4’#-

THRUST PROGRAM

Figure B-5 Subroutine Thrust
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SUBROUTENE THRUST
CIMMON FLINKH/T
CIMMON JLINKI/CALTH
LOGICAL CAL
IE{CALIGD YO 20
IF{T.6T.72+TDIGO TO 1O
[F{T.GE.T2)GO TO 11
IF(T.6T.T1+TDIGO TO 10
IF(T.GE.TLIGDO TO 12

10 TH=0.
RETURN

81 TH=-pPUH
RETURN

12 TH=PH
RETURN

BEFAEE bRk e Rk RF R AR R ARk AERR SR PR G RS RB SR Bk OB SR ek X &

INITIALIZE THRUST PROGRAM

READ STATEMENT NO. S
€0 lE=5
READ(S5 421 ¢ERR=50)PH,T1,72,TD
WRITE(6,22)PH
WRAITEL6423)TD
RETURN

Bk kRRgRRdR Rk kbRl G hk gk kR phkp kbR kR hokk bk gk R R

€0 WRITE(G6,51)IE
stoe

21 FORMAT(4F10.4)
22 FORMAT('0% 46X, PULSE HEIGHT OF HOZ THRUSTER = 8

1 eFB.29% LBS//)
¢3 FIRMATI6X " PULSE WIDTH OF HOZ THRUSTER = °
1 eF5.3,% SECS¢//}

€1 FIRMAT(® READ DATA ERROR AT READ STATEMENT NO. °,13}
END .
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(swren)
Lrve_ 7 srras S-rtals
®y
= ‘K”“.’
. =3
MALFDY = A/,
oroveé = 4%y
NEWOT = Palse
< ]
) ]
De Ffor y= 8,5 veles Bo few [ =1, Cates
y :
LsTXy =Xy XP3y =)ty
LSTYy =Y YielST Y e HRIFDT X Y
Y= Ve HALEOT - Xy
-4
4 NEWTIM = False
¢m¢ ¢ HALFDPT NYXTPAS =3
LSTPRPAS = False
NEWTIM = ¢vue l
NXTPRAS = 2
; RETURN
RETURN
; = 3
Do for ) = 3, States )
& Do For jud, States |

XpRy =Xy
Y= LST ¥j tAC Xy

¢ ¢ e WALEDT
MNEWTIME & $vrae
AIRTPAS Y

;

BETAE

)

Xy udl TRy KPRy ¢ R- APy + ¥y
Y= LSTYy ¢ PYOVE - X;

) 4

HEWTIM = false
LEF7PAS = ¢rueg

'

RETUREY

FOURTH-ORDER RUNGA-KUTTA INTEGRATION

Figure B-6 Subroutine INT
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SUBROUTINE INT

FOURTH-ORDER RUNGA-KUTTA INTEGRATION (&4A-1}

COMMON /LINKG/NEWDT NEWTIHLSTPAS,ITERAT
STATES.DT,X1203,Y{20}

COMMON ZLIRNKH/T

DIMENSION LSTX(20),LSTY{20) XPL{201,XP2(20}

INTEGER STATES

REAL LSTX,LSTY

LIGICAL LSTPAS,NEWTIMNEWDT

IF{ .NOT.LSTPAS}IGO TO 200

FIRST PASS

IF{ . NOT.NEWDTIGO TO 201
HALFDV=.5%DT
DTIV6=0T/6.
NEWDT=.FALSE.

D3 202 J=1,STATES
LSTX(JI=X(J)
LSTY(J)=Y(J)
YUd¥=Y{JI4tlALFDT*X(J)
T=T+HALFDT
LSTPAS=.FALSE.

NEWTIM=, TRUE.

NXTPAS=2

RETURN
IF{NXTPAS=31203,204,205

SECOND PASS

DO 206 J=1,STATES
XPLUJ)=X(J)}
Y{J)=LSTY(J)¢HALFDT%X(J]}
NEWTIM=.FALSE,

NXTPAS=3

RETURN

TAIRD PASS

DO 207 J=1,STATES
XP2(J)=X1J}
Y(JI=LSTY(J}eDTEX{J)
T=T4+HALFDT
NEWTIM=eTRUE.
NXTPAS=4

RETURN

FOURTH PASS

D3 208 J=1,STATES
XEJI=LSTXUSI#2.%XPLEJSYI42.%XP2(J) XL JD
Y{JI=LSTY(J)+DTOVEEXL J}
NEWTIM=-FALSE.

LSTPAS=-TRUE.

RETURN

END
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